1 Festival A will be in a rectangular field with an area of 80 000 m². The greatest number of people allowed to attend Festival A is 425

Festival B will be in a rectangular field 700 m by 2000 m.

The greatest number of people allowed to attend Festival B is 6750

The area per person allowed for Festival B is greater than the area per person allowed for Festival A.

(a) How much greater?
Give your answer correct to the nearest whole number.

Field A

area = $80,000 \, \text{m}^2$ max people = 425orea per person

= 80,000 = 188.2...

Field B area = $700 \times 2000 = 1,400,000$ max people = 6750area per person = 1,400,000 = 207.4...

différence is 207.4... - 188.2...
= 19.17...

= 19 to the nearest whole number (1)

[Q m²

Callum says,

" $300\,\mathrm{cm^2}$ is the same as $3\,\mathrm{m^2}$ because there are $100\,\mathrm{cm}$ in $1\,\mathrm{m}$ so you divide by 100" Callum's method is wrong.

(b) Explain why.

Because there are 10,000 cm² in 1m2 0

1m2=1mx 1m= 100cm × 100cm=10,000cm2.

(1)

2 A box in the shape of a cuboid is placed on a horizontal floor.

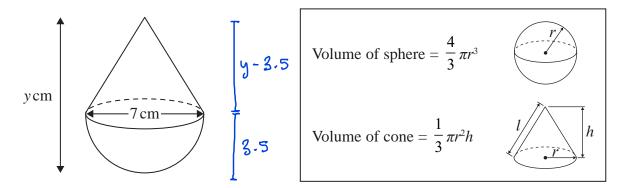
The box exerts a force of 180 newtons on the floor. The box exerts a pressure of 187.5 newtons/ m^2 on the floor.

$$pressure = \frac{force}{area}$$

The face in contact with the floor is a rectangle of length 1.2 metres and width x metres.

Work out the value of x.

USING area =
$$\frac{\text{force}}{\text{pressure}}$$


$$= \frac{180}{187.5} = 0.96 \text{ m}^2 \text{ (1)}$$

$$\propto A = 0.96 \qquad x = \frac{0.96}{1.2} = 0.8m$$

$$x = 0.8$$

(Total for Question 2 is 3 marks)

3 A solid cone is joined to a solid hemisphere to make the solid **T** shown below.

The diameter of the base of the cone is 7 cm.

The diameter of the hemisphere is 7 cm.

The total volume of **T** is 120π cm³

The total height of **T** is ycm.

(a) Calculate the value of y. Give your answer correct to 3 significant figures.

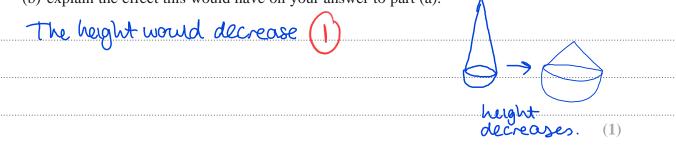
Give your answer correct to 3 significant figures.

.: Volume of
$$T$$

Method: find area of T in terms of y .

Diameter of hemisphere = $7cm$

So radius = $3.5cm$


Integral of cone = $y - 3.5$

We have $t = \frac{1}{12} t + \frac{343}{24} t = \frac{12}{12} t = \frac{12}{12} t + \frac{343}{24} t = \frac{12}{12} t = \frac{12$

The diameter of the base of the cone and the diameter of the hemisphere are both increased by the same amount.

Assuming the total volume of **T** does not change,

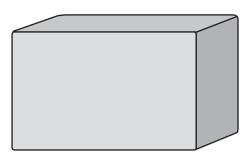
(b) explain the effect this would have on your answer to part (a).

(Total for Question 3 is 5 marks)

- 4 A car factory is going to make four different car models A, B, C and D.
 - 80 people are asked which of the four models they would be most likely to buy.

The table shows information about the results.

Car model	Number of people
A	23
В	15
C	30
D	12


The factory is going to make 40 000 cars next year.

Work out how many model **B** cars the factory should make next year.

$$=\frac{15}{80}=\frac{3}{16}$$

$$= 3 \times 2500$$

5

$$pressure = \frac{force}{area}$$

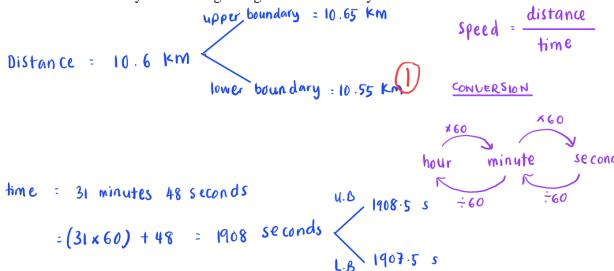
A storage tank exerts a force of 10000 newtons on the ground.

The base of the tank in contact with the ground is a 4m by 2m rectangle.

Work out the pressure on the ground due to the tank.

area =
$$4 \times 2 = 8m^2$$
 $\frac{10,000}{8} = \frac{2,500}{2} = 12500$

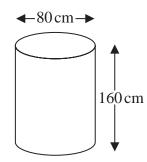
1250 newtons/m²


(Total for Question 5 is 2 marks)

6 A race is measured to have a distance of 10.6 km, correct to the nearest 0.1 km. Sam runs the race in a time of 31 minutes 48 seconds, correct to the nearest second.

Sam's average speed in this race is V km/hour.

By considering bounds, calculate the value of V to a suitable degree of accuracy.


You must show all your working and give a reason for your answer.

Speed upper =
$$\frac{\text{distance upper}}{\text{time lower}} = \frac{10.65 \text{ km}}{\frac{1907.5}{3600}} = 20.0996 \dots \text{ km/h}$$
Speed lower :
$$\frac{\text{distance lower}}{\text{time upper}} = \frac{10.65 \text{ km}}{\frac{1908.5}{3600}} = 20.0996 \dots \text{ km/h}$$

Since the upper and lower bound both round to
$$20 \, \text{km/h}$$
 correct to $2 \, \text{s.f.}$, $V = 20 \, \text{km/h}$.

7 Karina has 4 tanks on her tractor. Each tank is a cylinder with diameter 80 cm and height 160 cm.

The 4 tanks are to be filled completely with a mixture of fertiliser and water.

The fertiliser has to be mixed with water in the ratio 1:100 by volume. Karina has 32 litres of fertiliser.

1 litre = $1000 \, \text{cm}^3$

Has Karina enough fertiliser for the 4 tanks? You must show how you get your answer.

Volume of the cylinder = $\pi r^2 h$ r = radiuswe have $r = \frac{80}{2} = 40 \text{ cm}$ n = 160 cm

.. valume is $\pi (40)^2 (160) = 256000 \pi \text{ cm}^3 \text{ } \div 1000$ = 256 $\pi \text{ litres } 0$

So four tanks have a volume of $4 \times 256 \pi = 1024 \pi$ (thes 1)

we need fertiliser: water 1:100

1+100=101 1024π÷101=31.85... So Kanna needs at least 31.9 Litres of fertiliser. 32>31.9 so 10 Karna has enough fertiliser

(Total for Question 7 is 4 marks)

8 The pyramid P is formed from two parts made of different materials.

The top part of **P** has a mass of 92.8 g and is made from material with a density of 2.9 g/cm³ The bottom part of **P** has a mass of 972.8 g

The average density of **P** is 4.7 g/cm³

Calculate the volume of the top part of **P** as a percentage of the total volume of **P**. Give your answer correct to 1 decimal place.

You must show all your working.

volume
$$T = \frac{\text{mass}}{\text{density}} = \frac{92.8}{2.9} = 320$$

Total mass of
$$P = 92.8 + 972.8 = 1065.60$$

$$= \frac{1065.6}{4.7} = 226.72340$$

.. volume Tas a percentage of volume P

$$= \frac{32}{226.7234} \times 100 = 14.114...0$$

$$= 14.1 (1dp)$$